Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38056458

RESUMO

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Camundongos , Animais , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Magnésio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
2.
J Vis Exp ; (186)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36062997

RESUMO

Next-generation sequencing has gained increasing importance in the clinical application in the determination of genetic variants. In the pre-implantation genetic test, this technique has its unique advantages in scalability, throughput, and cost. For the pre-implantation genetic test for aneuploidy analysis, the semiconductor-based next-generation sequencing (NGS) system presented here provides a comprehensive approach to determine structural genetic variants at a minimum resolution of 8 Mb. From sample acquisition to the final report, the working process requires multiple steps with close adherence to protocols. Since various critical steps could determine the outcome of amplification, quality of the library, coverage of reads, and output of data, descriptive information with visual demonstration other than words could offer more detail to the operation and manipulation, which may have a great impact on the results of all critical steps. The methods presented herein will display the procedures involved in whole genome amplification (WGA) of biopsied Trophectoderm (TE) cells, genomic library construction, sequencer management, and finally, generating copy number variants' reports.


Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Blastocisto , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...